
International Journal of Management, Accounting and Economics  
Vol. 1, No. 4, November, 2014  
ISSN 2383-2126 (Online) 
© IJMAE, All Rights Reserved                                                                                              www.ijmae.com  
 

 
264 

 

Line Search and Genetic Approaches for 
Solving Linear Tri-level Programming Problem 

  
Eghbal Hosseini1  

Department of Mathematics, Payam Noor University of Tehran, Tehran, Iran 
 

Isa Nakhai Kamalabadi 
Department of Industry, University of Kurdistan, Sanandaj, Iran 

 
Abstract 
In the recent years, the multi-level programming problems specially the bi-

level and tri-level programming problems (TLPP) are interested by many 
researchers and these problems, particularly TLPP, are known as an 
appropriate tool to solve the real problems in several areas of optimization such 
as economic, traffic, finance, management, transportation, computer science 
and so on. Also, it has been proven that the general bi-level and TLPP are NP-
hard problems. The literature shows it has been proposed a few attempts for 
solving using TLPP. In this paper, we attempt to propose a new function for 
smoothing the tri-level programming problem after using Karush-Kuhn-Tucker 
condition, also we develop two effective approaches, one based on Genetic 
algorithm, which it is an approximate approach, and the other based on the 
hybrid algorithm by combining the proposed method based on penalty function 
and the line search algorithm for solving the linear TLPP. In both of these 
approaches, by using the Karush-Kuhn-Tucker condition the TLPP is 
converted to a non-smooth single problem, and then it is smoothed by proposed 
functions. Finally, the smoothed problem is solved using both of the proposed 
approaches. The presented approaches achieve an efficient and feasible 
solution in an appropriate time which has been evaluated by comparing to 
references and test problems. 

Keywords: Linear bi-level programming problem, Linear tri -level 
programming problem, Karush-Kuhn-Tucker conditions, Genetic theorem, 
Line search method. 

Cite this article: Hosseini, E., & Kamalabadi, I. N. (2014). Line Search and Genetic 
Approaches for Solving Linear Tri-level Programming Problem. International Journal of 
Management, Accounting and Economics, 1 (4), 264-283. 

                                                             
1 Corresponding author’s email: eghbal_math@yahoo.com 



International Journal of Management, Accounting and Economics  
Vol. 1, No. 4, November, 2014  
ISSN 2383-2126 (Online) 
© IJMAE, All Rights Reserved                                                                                              www.ijmae.com  
 

 
265 

 Introduction 

  It has been proved that the BLP is NP- Hard problem even to seek for the locally 
optimal solutions (Bard, 1991; Vicente, et al., 1994).  Nonetheless the BLPP is an 
applicable problem and practical tool to solve decision making problems. It is used in 
several areas such as transportation, finance and so on. Therefore finding the optimal 
solution has a special importance to researchers. Several algorithms have been presented 
for solving the BLP (Yibing, et al., 2007; Allende & G. Still,2012; Mathieu, et al., 1994; 
Wang, et al., 2008; Wend & U. P. Wen, 2000; Bard, 1998,  Facchinei, et al., 1999). 
These algorithms are divided into the following classes:  Transformation methods 
(Luce, et al., 2013; Dempe & Zemkoho, 2012), Fuzzy methods (Sakava et al., 1997; 
Sinha 2003; Pramanik & T.K. Ro 2009; Arora & Gupta 2007; Masatoshi & Takeshi.M 
2012; Zhongping & Guangmin. 2008, Zheng et al., 2014), Global techniques (Nocedal 
& Wright, 2005; Khayyal, 1985; Mathieu, et al., 1994; Wang et al., 2008, Wan, et al., 
2014, Xu, et al., 2014, Hosseini and Nakhai Kamalabadi, 2014), Primal–dual interior 
methods (Wend & Wen, 2000), Enumeration methods (Thoai et al., 2002), Meta 
heuristic approaches (Hejazi et al., 2002; Wang et al., 2008; Hu et al., 2010; Baran et 
al., 2010; Wan et al., 2012; Yan, et al., 2013; Kuen-Ming et al., 2007, Hosseini and 
Nakhai Kamalabadi., 2013, He, Li and Huang, 2014).However several algorithms have 
been proposed to BLPP, a few algorithms have been proposed to solve TLPP (Zhang  et 
al., 2010).   

 The remainder of the paper is structured as follows: in Section 2, basic concepts of 
the linear BLPP and TLPP are introduced. We provide a smooth method to BLPP and 
TLPP in Section 3. The presented algorithm is proposed in Section 4. Computational 
results are presented for our approach in Section 5. Finally, the paper is finished in 
Section 6 by presenting the concluding remarks. 

 The linear bi-level and tri-level programming problems  

In this section models of bi-level and tri-level programming problems are introduced.  

BLPP is used frequently by problems with decentralized planning structure. It is 
defined as:  

min F(x, y) = a x + b y 

    s. t min g(x, y) = c x + d y 

                Ax + By ≤ r, 

                   x, y ≥ 0.  

(1) 

where a, c ∈ R . b, d ∈ R , A ∈ R × . B ∈ R × , r ∈ R , x ∈ R , y ∈ R  and 
퐹(푥, 푦) and 푔(푥, 푦) are the objective functions of the leader and the follower, 
respectively.  
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  In general, BLPP is a non-convex optimization problem; therefore, there is no 
general algorithm to solve it. This problem can be non-convex even when all functions 
and constraints are bounded and continuous. Of course, the linear BLPP is convex and 
preserving this property is very important. A summary of important properties for 
convex problem are as follows, which 퐹:푆

.
→ 푅  and 푆 is a nonempty convex set in 푅 :                                           

(1) The convex function f is continuous on the interior of 푆. 
(2) Every local optimal solution of 퐹 over a convex set 푋 ⊆ 푆  is the unique global 

optimal solution. 
(3) If 훻퐹(푥̅) = 0, then 푥̅  is the unique global optimal solution of 퐹 over 푆.  

Because a tri-level decision reflects the principle features of multi-level 
programming problems, the algorithms developed for tri-level decisions can be easily 
extended to multi-level programming problems which the number of levels is more than 
three. Hence, just tri-level programming is studied in this paper.  

In a TLPP, each decision entity at one level has its objective and its variables in part 
controlled by entities at other levels. To describe a TLPP, a basic model can be written 
as follows: 

min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

                               퐴 x + 퐵 y + 퐶 z ≤ 푟 , 

    s. t min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

                               퐴 x + 퐵 y + 퐶 z ≤ 푟 , 

        s. t min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

                               퐴 x + 퐵 y + 퐶 z ≤ 푟 , 

                                    x, y, z ≥ 0.  

(2) 

Where  퐴 ∈ R × ,퐵 ∈ R × ,퐶 ∈ R × , 푟 ∈ R , x ∈ R , y ∈ R , z ∈ R , 푎 ∈ R , 푏 ∈
R , 푐 ∈ R , i = 1,2,3, and the variables x, y, z are called the top-level, middle-level, and 
bottom-level variables respectively, 퐹 (x, y, z),퐹 (x, y, z),퐹 (x, y, z), the top-level, 
middle-level, and bottom-level objective functions, respectively. In this problem each 
level has individual control variables, but also takes account of other levels’ variables in 
its optimization function. 

To obtain an optimized solution to TLP problem based on the solution concept of bi-
level programming, we first introduce some definitions and notation: 

Definition 1 

The feasible region of the TLP problem when i=1, 2, 3, is 
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S
= {(x, y, z)|퐴 x + 퐵 y + 퐶 z ≤ 푟  , x, y, z ≥ 0. } (3) 

On the other hand, if x be fixed, the feasible region of the follower can be explained 
as 

 
S =
{(y, z)|퐵 y + 퐶 z ≤ 푟 − 퐴 x , y, z ≥ 0}. 

(4) 

Based on the above assumptions, the follower rational reaction set is 

P(x) = {(y, z)
∈ argming(x, y, z), (y, z) ∈ S(x)}. (5) 

Where the inducible region is as follows  

IR = {(x, y, z) ∈ S, (y, z) ∈ P(x)}. (6) 

Finally, the tri-level programming problem can be written as 

min {F(x, y, z)|(x, y, z) ∈ IR}. (7) 

If there is a finite solution for the TLP problem, we define feasibility and optimality 
for the TLP problem as 

S = {(x, y, Z)|퐴 x + 퐵 y + 퐶 z
≤ 푟 ,   x, y, z ≥ 0}. (8) 

Definition 2 

Every point such as (x, y, z)is a feasible solution to tri-level problem if (x, y, Z) ∈ IR 

Definition 3 

Every point such as (x∗, y∗ , z∗) is an optimal solution to the tri-level problem if  

F(x∗. y∗, z∗ ) ≤ F(x, y, z)  (x, y, z) ∈ IR.                                             (9) 

 Smooth method for TLPP  

Using KKT conditions for both of last levels in problem (2), the following problem is 
constructed:  

min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 (10) 
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    s. t     퐴 x + 퐵 y + 퐶 z − 푟 ≤ 0, 

             퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

              퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

              µ(퐴 x + 퐵 y + 퐶 z− 푟 ) = 0, 

              µ퐵 = −푏 , 

             β(퐴 x + 퐵 y + 퐶 z − 푟 ) = 0, 

              β퐶 = −푐 , 

                        x, y, z,µ,β ≥ 0.  

Because problem (10) has a complementary constraint, it is not convex and it is not 
differentiable. In this paper we propose a smooth method for smoothing complementary 
constraints in problem (10). Using the following smooth method, problem (10) will be 
smoothed, and then we present two algorithms based on Taylor theorem and hybrid 
algorithm to solve it.  

Theorem 3.1: 

Let, ϕ: R → R ,ϕ(m, n) = 2m − n − √4m + n    or ϕ: R → R  , ϕ(m, n,ℇ) =
2m− n − √4푚 + n + ℇ , where 푚 ≥ 0, 푛 ≥ 0, then ϕ(m, n) = 0

.
⇔  mn = 0,  and  

ϕ(m, n, ℇ) = 0
.
⇔  mn = ℇ ,푚 ≥ 0,푛 ≥ 0 

Proof: 

ϕ(m, n) = 0
.
⇔2m − n − 4m + n = 0  

.
⇔2m− n = 4m + n

.
⇔ (2m − n) = 4m + n  

.
⇔4m + n − 4mn = 4m + n

.
⇔− 4mn = 0

.
⇔mn = 0. 

Also  

ϕ(m, n, ℇ) = 0
.
⇔2m − n − 4푚 + n + ℇ = 0 

.
⇔2m− n = 4푚 + n + ℇ

.
⇔ (2m− n) = 4푚 + n + ℇ 

.
⇔4푚 + n − 4mn = 4푚 + n + ℇ

.
⇔− 4mn = ℇ

.
⇔mn =

ℇ
4 ,푚 ≥ 0,푛 ≥ 0.  

Using the proposed function ϕ(m, n,ℇ) = 2m− n − √푚 + n − ℇ in 
problem (10), we obtain the following problem: 

(11) 
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min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

    s. t      

             퐴 x + 퐵 y + 퐶 z − 푟 ≤ 0, 

             퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

             퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

              2µ − g (x, y) − 4µ + g (x, y) − ε =
ε
4 , i = 1,2, … , l, 

              µ퐵 = −푏 , 

             2β − h (x, y) − 4β + h (x, y) − ε =
ε
4 , i = 1,2, … , l, 

              β퐶 = −푐 , 

                        x, y, z,µ , β ≥ 0.  

 

Which in the first constraint  푚 = µ ≥ 0, 푛 = −g (푥,푦) ≥ 0,    g (x, y) =  푎 x +
푏 y + 푐 z and  푎 ,푏 , 푐   are i-th row of A, B, C respectively and in the second constraint  
푚 = β ≥ 0,푛 = −h (푥, 푦) ≥ 0,    h (x, y) =  푎 x + 푏 y + 푐 z − r and  푎 , 푏 , 푐     are i-
th row of A, B, C. 

Let: 

G(x,y,µ)=

⎣
⎢
⎢
⎢
⎢
⎡2µ − g (x, y) − µ + g (x, y) − ℇ
2µ − g (x, y) − µ + g (x, y) − ℇ

⋮

2µ − g (x, y) − µ + g (x, y) − ℇ ⎦
⎥
⎥
⎥
⎥
⎤

                                                     (12)                                                             

                  

H(x,y, β)=

⎣
⎢
⎢
⎢
⎢
⎡2β − h (x, y) − µ + h (x, y) − ℇ
2β − h (x, y) − µ + h (x, y) − ℇ

⋮

2β − h (x, y) − µ + h (x, y) − ℇ ⎦
⎥
⎥
⎥
⎥
⎤

                                                          (13)                                                                            
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퐻 (푥,푦, µ) = 퐻(푥,푦, µ) − ℇ     ,

퐺 (푥, 푦,µ) = 퐺(푥,푦, β) − ℇ                                           (14)                                                                                                                            

Problem (11) can be written as follows: 

min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

    s. t      

             퐴 x + 퐵 y + 퐶 z − 푟 ≤ 0, 

             퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

              퐴 x + 퐵 y + 퐶 z− 푟 ≤ 0, 

             퐺 (t) = 0,   

             퐻 (t) = 0,   

              µB = −푏 , 

              βC = −푐 , 

                        x, y, z,µ,β ≥ 0.   

(15) 

Where 푡 = (x, y, µ) ∈ 푅       

Because problem (10) equal to (15), we use the following method for solving 
problem (15).            

 Genetic algorithm for TLPP 

In this section, basic and general concepts related to genetic proposed algorithm are 
discussed. Genetic algorithms are global methods that are used for global searches. As 
the previous researchers indicate (Luce, Saïd & Raïd, 2013), Masatoshi & Takeshi 
(2012) the basic characteristics of these algorithms consist of:  

1. Initial population of solution is produced randomly. Some of the genetic 
algorithms use other Meta heuristic method to produce the initial population. 

2. Genetic algorithms use a lot of feasible solutions. Therefore they usually avoid 
local optimal solutions.  

3. Genetic algorithms used to solve very large problems with many variables.  
4. These algorithms are simple and do not need extra conditions such as continuity 

and differentiability of objective functions.   
5. Genetic algorithms usually gain several optimal solutions instead unique optimal 

solution. This property is useful for multi objective function and multi- level 
programming. 
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  In the proposed genetic algorithm, each feasible solution of BLPP usually is 
transformed by string of characters from the binary alphabet that is called chromosome. 
The genetic algorithm works as follows: 

  Initial generation, that is generated randomly, is divided in overall the feasible 
space similarly. Then chromosomes are composed together to construct new generation. 
This process continues till to get appropriate optimal solution. The general genetic 
algorithm process as follows: 

 

End.:11
 Whileof End:10

1  :9
))(''( select)1( :8

)('' evaluate:7
)(' mutate )('' :6

)( recombine)(' :5
do not  While:4

)( evaluate:3
)( initialize:2

0:1

:1lg









tt
QtPtP

tP
tPtP

tPtP
terminate
tP
tP

t

BLPPsolvetoGAorithmA



 

Where P(t) is a population of chromosomes in t-th generation and Q is a set of 
chromosomes in the current generation which are selected. 

In the suggested method, every chromosome is demonstrated by a string. This string 
consists of    

k + l + p,  binary components. Also these chromosomes are applied in problem (15) 
that it is created by using Karush -Kuhn –Tucker (KKT) conditions and proposed 
smoothed method for TLPP. Using slack variables, such as w, v, u, problem (15) is 
prepared for using genetic algorithm:  

 

min퐹 (x, y, z) = 푎 x + 푏 y + 푐 푧 

    s. t      

             퐴 x + 퐵 y + 퐶 z − 푟 + w = 0, 

             퐴 x + 퐵 y + 퐶 z− 푟 + v = 0, 

(16) 
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              퐴 x + 퐵 y + 퐶 z− 푟 + u = 0, 

             퐺 (t) = 0,   

             퐻 (t) = 0,   

              µB = −푏 , 

              βC = −푐 , 

              tw = 0, vy = 0,     uz = 0, 

                        t, w, v, u, x, y, z,µ, β ≥ 0. 

Now the chromosomes are applied according the following rules [15]: 

If the i-th component of the chromosome is equal to zero, then 푡 = 0,푤 ≥ 0  Else   
푡 ≥ 0,푤 = 0. 

If the j-th component of the chromosome is equal to zero, then  푣 = 0,푦 ≥ 0 Else  
 푣 ≥ 0,푦 = 0. 

If the h-th component of the chromosome is equal to zero, then  푢 = 0, 푧 ≥ 0 Else  
 푢 ≥ 0, 푧 = 0. 

 Steps of our algorithm 

In this section, the algorithm steps are proposed. 

Step 1: Generating the initial population. 

  The initial population includes solutions in the feasible region that are called 
achievable chromosomes. These chromosomes are generated by solving the following 
problem: 

        min 푐 푧 

                    퐴 x + 퐵 y + 퐶 z ≤ 푟 , 

                                    z ≥ 0.  

 

Where, 푟  is a random vector by changing it, the optimal solution changes too. 

Step 2: Keeping the present best chromosome in an array 

 The best chromosome is kept in the array at the each iteration. This process 
continues till the algorithm is finished, then the best chromosome is found in the array 
as the optimal solution. 
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Step 3: Crossover operation 

 Crossover is a major operation to compose a new generation. In this stage two 
chromosomes are selected randomly and they are combined to generate a new 
chromosome. In the new generation components are created by the following rules: 

1. The i-th component of the first child is replaced by the sum of the i-th components 
of parents (i=1,2,…,k). The operation sum is defined as follows: 

0+1=1 0+1=1 0+0=0 1+1=0 

The other components are remained the same as the first parent.  

2. The (k+i)-th component of the second child is replaced by the sum of the (k+i)-th 
components of parents (i=1,2,…,l+p). The operation sum is defined as above.  The other 
components are remained the same as the second parent.  

For example, by applying the present method to the following parents, and k= 5, l=4, 
p=3, we generate the following children: 

Parents:                                               Children: 

10110  1001 101                                01100  1001  101 

11010  0111 001                                11010  1110  100 

Step 4: Mutation 

 The main goal of mutation in GA is to avoid trapping in local optimal solutions. In 
this algorithm each chosen gene of every chromosome, mutates as follows: 

If the value of the chosen gene be 0, it will be changed to 1 and if the value of the 
chosen gene be 1, it will be changed to 0. 

Step 5: Selection 

 The chromosomes of the current population are arranged in descending order of 
fitness values. Then we select a new population similar to the size of the first 
generation. If the number of   the generations is sufficient we go to the next step, 
otherwise the algorithm is continued by the step3.  

Step 6: Termination 

 The algorithm is terminated after a maximum generation number. The best produced 
solution that has been recorded in the algorithm is reported as the best solution to BLPP 
by proposed GA algorithm.                   
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 Hybrid algorithm (HA)  

   Penalty functions transform a constrained problem into a single unconstrained 
problem or into a sequence of unconstrained problems. The constraints are appended 
into the objective function via a penalty parameter in a way that penalizes any violation 
of the constraints. In general, a suitable function must incur a positive penalty for 
infeasible points and no penalty for feasible points. Also, the penalty function method is 
a common approach to solve the bi-level programming problems. In this kind of 
approach, the lower level problem is appended to the upper level objective function with 
a penalty. We use a penalty function to convert problem (15) to an unconstraint 
problem. 

  Consider problem (15); we append all constraints to the first level objective 
function with a penalty for each constraint. Then, we obtain the following penalized 
problem. 

min F(푡) +훼 (βC + 푐 ) + 훼 (µ퐵 + 푏 ) + 훼 퐺 (t) + 훼 퐻 (t)

+ 훼 (퐴 x + 퐵 y + 퐶 z

− 푟 )                                                                                           (17) 

Now we solve problem (15) using our line search method. The line search method is 
proposed as follows: 

Given a vector 푥, a suitable direction 푑 is first determined, and then 푓 is minimized 
from 푥 in the direction 푑. Our method searches along the directions ( 푑 ,푑 , … , 푑 ) 
where 푑 , 푗 = 1,2, … ,푛 − 1 is a vector of zeros except at the 푗th position which is 1 and 
푑 =

√
,
√

, , … ,
√

.              

  Clearly, all directions have a norm equal to 1 and they are linearly independent 
search directions. In fact, the proposed line search method uses the following directions 
as the search directions: 

푑 = (1,0, … ,0),푑 = (0,1, … ,0), … ,푑 =  

(0, … ,1,0),푑 =

√
,
√

, , … ,
√

                                                                                         (18)                                                               

Therefore, along the search direction 푑 , 푗 = 1,2, … ,푛 − 1 , the variable 푥  is changed 
while all other variables are kept fixed. We summarize below the proposed line search 
method for minimizing a function of several variables. Then, we show that, if the 
function is differentiable then the proposed method converges to a stationary point. 

Step 1: Initial step 
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Choose a scalar ℇ > 0 to be used for terminating the algorithm, and let 
푑 , 푑 , … , 푑  be the coordinate directions and 푑  be a vector of 

√
 . Choose an initial 

point 푥  let 푥 = 푦 . 푘 = 푗 = 1, and go to the next step. 

Step 2: Main step 

Let µ  be an optimal solution to the problem to minimize (푦 + µ푑 ) , and let 
푦 = 푦 + µ 푑  

If  푗 < 푛  replace 푗 by 푗 + 1, and repeat step1. Otherwise, if 푗 = 푛, go to the next 
step. 

Step 3: Termination  

Let  푥 = 푦  if  ‖푥 − 푥 ‖ < 휀  then stop, otherwise, let  푦 = 푥  and 
푗 = 1, replace 푘 by 푘 + 1, and repeat step 2.  

  We now propose a theorem which establishes the convergence of algorithms for 
solving a problem of the form: minimize 푓(푥) subject to 푥 ∈ 푅 . We show that an 
algorithm that generates n linearly independent search directions, and obtains a new 
point by sequentially minimizing f along these directions, converges to a stationary 
point. The theorem also establishes the convergence of algorithms using linearly 
independent and orthogonal search directions.  

We now show that two problems (15) and (17) have the same optimal solution 
according to the following theorem. 

Theorem 5.1: 

Consider the following problem: 

min푓(푥)  

 푠. 푡 푔  (푥) ≤ 0,  i=1,2,…,m, 

      ℎ  (푥) = 0,  j=1,2,…,l, 

(19) 

where  푓,푔 , … ,푔 , ℎ , … ,ℎ   are continuous functions on  푅   and  푋  is a 
nonempty set in 푅 .  Suppose that the problem  

has a feasible solution, and 훼 is a continuous function as follows: 

훼(x) = ∑ ∅[푔 (푥)] +
∑ ∅[ℎ (푥)]  (20) 

where  

∅(푦) = 0  if  y ≤ 0, ∅(푦) > (21) 
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0  푖푓  푦 > 0.  

∅(푦) = 0  if  y = 0, ∅(푦) >
0  푖푓  푦 ≠ 0.  (22) 

 Then,  

inf{푓(푥):푔(푥) ≤ 0,   ℎ(푥) = 0,푥
∈ 푋}
= inf{푓(푥)
+ µ훼(푥):푥 ∈ 푋} (23) 

Where µ is a large positive constant (µ → ∞). 

Proof: 

This theorem has been proven by (Nocedal, J, & S.J. Wright. (2005)).  

 Computational results  

To illustrate both algorithms, we consider the following examples.  

Example 1 (Zhang , G, J. Lu , J. Montero , & Y. Zeng , Model. (2010)): 

Consider the following linear tri-level programming problem:  

min x − 4y + 2z 

          s. t 

             −x − y ≤ −3, 

           −3 x + 2y − z ≥ −10, 

                min 푥 + 푦 − 푧 

             s. t 

                     −2 x + y − 2z ≤ −1, 

                        2x + y + 4z ≤ 14, 

                          min 푥 − 2푦 − 2푧 

                          s. t 
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                                 2x − y − z ≤ 2, 

                         x, y, z ≥ 0. 

Using KKT conditions, the following problem is obtained: 

min x − 4y + 2z 

          s. t 

                      −x − y ≤ −3, 

                       3 x − 2y + z ≤ 10, 

                     −2 x + y − 2z ≤ −1, 

                        2x + y + 4z ≤ 14, 

                      β (−2 x + y − 2z + 1) = 0, 

                        β ( 2x + y + 4z− 14) = 0, 

                        β +  β = 1, 

                        2x − y − z ≤ 2, 

                         µ ( 2x− y − z− 2) = 0, 

                          µ (−1) =−2, 

                         x, y, z,  β ,  β  , µ ≥ 0. 

By the proposed function, the above problem becomes: 

min x − 4y + 2z 

          s. t 

                      −x − y ≤ −3, 

                       3 x − 2y + z ≤ 10, 

                      2β − (−2 x + y − 2z + 1)

−  β + (−2 x + y − 2z + 1) + ℇ = 0,
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                      2β − (2x + y + 4z− 14)

−  β + (2x + y + 4z − 14) + ℇ = 0,
 

                     2µ − (2x− y − z− 2)
− µ + (2x − y − z − 2) + ℇ = 0,

 

                        β +  β = 1, 

                        µ (−1) =−2, 

                         x, y, z,  β ,  β  , µ ≥ 0. 

Optimal solution presented according to Table 1. Behavior of the variables in 
Example 1 has been show in figure 1.  

 
Figure 1- Behavior of the variables in Example 1 

 

Table 1- Comparison of optimal solutions by genetic algorithm – Example 1. 

Optimal Solution Best solution by our method Best solution according to reference 

(푥∗,푦∗, 푧∗) (4,6,0) (4,6,0) 
퐹 (x, y, z) -20 -20 
퐹 (x, y, z) 10 10 
퐹 (x, y, z) -8 -8 

 

Example 2 (Zhang , G, J. Lu , J. Montero , & Y. Zeng , Model. (2010).): 

Consider the following linear tri-level programming problem.  
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min x + 4y + 2z 

          s. t 
             x − 3y + 9z ≤ 30, 
           −3 x + 5y − z ≤ −100, 
                min−푥 + 7푦 − 푧 

             s. t 
                      3x + 5y − z ≤ 160, 
                          min 7푥 + 푦 + 21푧 

                          s. t 
                                 3x − 4y − 2z ≤ 212, 
                         x, y, z ≥ 0. 
 

 

  

Optimal solution for this example is presented according to Table 2. Behavior of the 
variables has been show in figure 2. 

Table 2- Comparison of optimal solutions by Taylor algorithm – Example 2. 

Optimal Solution Best solution by our method Best solution according to reference 

(푥∗,푦∗, 푧∗) (10,28.33,11.66) (10,28.33,11.66) 
퐹 (x, y, z) 146.66 146.66 
퐹 (x, y, z) 176.6 176.6 
퐹 (x, y, z) 343.3 343.3 

 

 

Figure 2 - Behavior of the variables in Example 2 

Example 1 (solving by hybrid algorithm):  

Consider the following linear tri-level programming problem:  
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min x − 4y + 2z 

          s. t 
             −x − y ≤ −3, 
           −3 x + 2y − z ≥ −10, 
                min 푥 + 푦 − 푧 

             s. t 
                     −2 x + y − 2z ≤ −1, 
                        2x + y + 4z ≤ 14, 
                          min 푥 − 2푦 − 2푧 

                          s. t 
                                 2x − y − z ≤ 2, 
                         x, y, z ≥ 0. 

 

Using hybrid algorithm the problem is solved. Optimal solution for this example by 
hybrid algorithm is presented according to Table 3.  

Table 3- Comparison of optimal solutions by hybrid algorithm – Example 1. 

Optimal 
Solution 

Best solution by hybrid 
algorithm 

Best solution according to 
reference 

(푥∗,푦∗, 푧∗) (4.3,6.2,0.1) (4,6,0) 
퐹 (x, y, z) -20.3 -20 
퐹 (x, y, z) 10.4 10 
퐹 (x, y, z) -8.3 -8 

 

Example 2 is solved by hybrid algorithm and computational results are proposed in 
Table 4.  

Table 4- Comparison of optimal solutions by hybrid algorithm – Example 2. 

Optimal 
Solution 

Best solution by hybrid 
algorithm 

Best solution according to 
reference 

(푥∗,푦∗, 푧∗) (10.1,28.4,11.6) (10,28.33,11.66) 
퐹 (x, y, z) 147.16 146.66 
퐹 (x, y, z) 176.93 176.6 
퐹 (x, y, z) 345.33 343.3 
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