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Abstract 

Loss Given Default (LGD) is one of the key parameters needed in order to 

estimate expected and unexpected credit losses necessary for credit pricing as 

well as for calculation of the regulatory Basel II requirement (BCBS, 2006). 

While the credit rating and probability of default (PD) techniques have been well 

developed in recent decades, LGD has attracted little attention before 2000s.In 

this paper, We compare linear regression and survival analysis models for 

modelling recovery rates and recovery amounts, in order to predict the  LGD for 

unsecured consumer loans or credit cards. 
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Introduction 

With the introduction of Basel II, banks are allowed to use internally developed models 

for calculating its regulatory capital. This is called the Internal Ratings-Based (IRB) 

approach. Otherwise, the bank should calculate its regulatory capital based on the 

standardized approach which results in higher capital requirements. The purpose of the 

development of rating models is to identify and combine those factors that differentiate 

between facilities the best in terms of riskiness. The terms used to describe risk of 

facilities are probability of default (PD), loss given default (LGD) and exposure at default 

(EAD).Within Rabobank International (RI) models have been developed by the 

Modelling and Research department. 

In order to determine PD, credit scoring systems were built. They try to answer the 

question how likely an applicant for credit is to default within a certain period. Many 

models are available of which currently the most commonly used is the logistic regression 
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(LR) approach, see e.g. Stepanova & Thomas (2002). In recent years, survival analysis 

has been introduced into credit scoring. This collection of statistical methods tries to 

model the time to default and has advantages compared to other credit scoring systems. 

Loss Given Default (LGD) is one of the key parameters needed in order to estimate 

expected and unexpected credit losses necessary for credit pricing as well as for 

calculation of the regulatory Basel II requirement (BCBS, 2006). While the credit rating 

and probability of default (PD) techniques have been well developed in recent decades, 

LGD has attracted little attention before 2000s. One of the first papers on the subject 

(Schuermann, 2004) provides an overview of what has been known about LGD at that 

time. Since the first Basel II consultative papers being published there has been an 

increasing amount of research on LGD estimation techniques (see e.g. Altman, Resti & 

Sironi, 2004; Frye, 2003; Gupton, 2005; Huang & Oosterlee, 2008; etc.). 

One of the first papers on the subject (Schuermann, 2004) provides an overview of 

what has been known about LGD at that time. Since the first Basel II consultative papers 

being published there has been an increasing amount of research on LGD estimation 

techniques One of the issues financial institutions estimating PD and LGD face is lack of 

data. Besides the problem of short time series the most recent development is usually 

represented only by partial, i.e. censored data on defaults and recoveries. If default is 

defined as a legal bankruptcy or 90 days past due observed in the standard 12 month 

horizon then it is difficult to use data on loans granted during the last 12 months to predict 

PD for new applications. The problem is even more serious for LGD where financial 

institutions have started to collect data on recoveries from defaulted receivables in 

systematic manner relatively recently and moreover the recovery process usually takes 

up to three or even more years. Hence even if a bank observed recoveries on loans that 

defaulted in the past five years many or majority of LGD observations may be incomplete. 

It may be then difficult or impossible to estimate the LGD satisfying the regulatory 

requirements (BCBS, 2005) as well as the point-in-time LGD important for actual credit 

pricing that should reflect the most recent trends. It is natural to apply the statistical 

technique of survival time analysis to model the probability of default. The technique 

allows to utilize censored default data as well as to model consistently probabilities of 

default in different time horizons. There is a relatively extensive literature on the subject 

(see e. g. Narain, 1992; Andreeva, 2006; Chava – Stefanescu –Turnbull, 2008) and the 

technique is used by some banks and practitioners. 

On the other hand with the exception of Rychnovsky (2009) there is no literature to 

the authors’ knowledge on possible applications of the survival time modeling techniques 

to LGD modeling. This can be explained by the fact that the LGD estimation techniques 

are generally less developed and the interpretation of recovery data as time survival data 

is less straightforward than in the case of defaults.  

In this paper, we use linear regression and survival analysis models to build predictive 

models for the recovery rate, and hence LGD. The comparison will be made based on a 

case study involving data from an in-house collection process for personal loans. This 

consisted of collection data on 27,000 personal loans over the period from 1989 to 2004. 
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Methodology 

Recovery Rates and Loss given Default 

First we need to specify the notions of realized (ex post) and expected (ex ante) 

Recovery rate (RR) and the complementary Loss Given Default (LGD). Realized RR can 

be observed only on defaulted receivables while the expected recovery rate is estimated 

for non defaulted receivables based on available information. The RR and LGD are 

expressed as percentages out of the exposure outstanding at default (EAD) and LGD = 1 

– RR is simply the complementary loss rate based on the recovery rate that is usually less 

than 1. For market instruments like bonds or other debt securities we may define the 

market RR as the market value out of the principal (plus coupon accrued at default) of the 

security shortly (e.g. one month) after the default. Applicability of the definition assumes 

existence of an efficient and sufficiently liquid market for defaulted debt. For other 

receivables we have to observe the net recovery cash flows CFt from the receivable 

generated by a work-out process. The work-out process may be internal or external where 

a collection company is paid a fee for collecting the payment on behalf of the receivable 

owner. The process may also combine an ordinary collection and sale of the receivable to 

a third party. In any case the work-out process involves significant costs that must be 

deducted from the gross recoveries. The net cash flows must be finally discounted with a 

discount rate r appropriately reflecting the risk (BCBS, 2005). 

Having collected and calculated the realized recovery rates the next task is to estimate 

LGD for non defaulted accounts. In case of new loan applications banks need to estimate 

not only the probability of default (i) in the 12 month or longer horizon but also the LGD 

in the same horizon. 

The loan interest rate margin should cover the expected loss PD⋅ LGD besides the cost 

of funds, administrative costs, minimum profit, etc. The ex ante LGD must be also 

calculated by banks applying the Advanced Internal Rating Based Approach (AIRB) in 

order to calculate the capital requirement for every non-defaulted receivable as defined 

by the Basel (2006) regulation. 

Linear regression model 

Linear regression is the most obvious predictive model to use for recovery rate (RR) 

modelling, and is also widely used for prediction in other financial areas. Formally, a 

linear regression model fits a response variable y to a function of regressor variables 

𝑥1, 𝑥2, …, xm and parameters. The general linear regression model has the form 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑚𝑥𝑚 + 𝜀,                          (2.1) 

where, in this case, 

𝑦 is the recovery rate or recovery amount; 

𝛽0, 𝛽1, … , 𝛽𝑚 are unknown parameters; 
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𝑥1, 𝑥2, … , 𝑥𝑚 are independent variables which describe various characteristics of the 

loan and the borrower; and ε is a random error term. 

In linear regression, one assumes that the mean of each error component (random 

variable ε) is zero, and each error component follows an approximate normal distribution. 

However, the distribution of the recovery rate tends to be a bathtub shape, so the error 

component of the linear regression model for predicting the recovery rate does not satisfy 

these assumptions. 

Survival analysis models 

Survival analysis concepts 

In survival analysis, one is normally dealing with the time that an event occurs; 

however, in some cases the event has not yet occurred, and so the data are censored. In 

our recovery rate approach, the target variable is how much has been recovered before 

the collection process stops, at which point collection is still underway in some cases, and 

thus the recovery rate is censored. The debts which had been written off are uncensored 

events, while the debts which are still being paid are censored events, because we do not 

know how much more money will be paid or could be paid. If the whole loan is paid off, 

we could treat this as a censored observation, as the recovery rate(RR) is greater than 1 

in some cases. If one assumes that the recovery rate will never exceed 1, then such 

observations are not censored. Since we redefine the cases where RR >1 to RR = 1, we 

will consider all recovery rates of 1 to be censored. 

Since the recovery process takes so long, survival analysis has an advantage over the 

regression approaches, in that one can also use the data for the cases which are still in the 

recovery process, rather than having to wait until they have either been paid off 

completely or been written off. Thus, in the regression approach one is using data on cases 

which are at least five years since default, on average. Suppose that T is the random 

variable of the percentage of the debt recovered (defined as RR in this case), which has a 

probability density function f . If an observed outcome, t of T , always lies in the interval 

[0,+∞), then T is a survival random variable. The cumulative density function F for this 

random variable is 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢

𝑡

0

,             (2.2) 

and the survival function is defined as: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡) = ∫ 𝑓(𝑢)𝑑𝑢

∞

𝑡

.               (2.3) 

Likewise, given S, one can calculate the probability density function f (u), 
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𝑓(𝑢) = −
𝑑

𝑑𝑢
𝑆(𝑢).                  (2.4) 

The hazard function h(t) is an important concept in survival analysis, because it models 

the imminent risk. Here, the hazard function is defined as the instantaneous rate of no 

further payment of the debt, given that t% of the debt has been repaid: 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡)

∆𝑡
.                          (2.5) 

The hazard function can be expressed in terms of the survival function, 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
,          𝑡 > 0.                (2.6) 

Rearranging, we can also express the survival function in terms of the hazard, 

𝑆(𝑡) = 𝑒− ∫ ℎ(𝑢)𝑑𝑢
𝑡

0 .                       (2.7) 

Finally, the cumulative hazard function, which relates to the hazard function h(t), 

namely 

𝐻(𝑡) = ∫ ℎ(𝑢)𝑑𝑢

𝑡

0

= − ln 𝑆(𝑡),                  (2.8) 

is used widely. 

It should be noted that f , F , S, h and H are related, and only one of the functions is 

required for us to be able to calculate the other four. There are two types of survival 

analysis models which connect the characteristics of the loan to the amount recovered: 

accelerated failure time models and Cox proportional hazards regression. 

Accelerated failure time models 

In an accelerated failure time model, the explanatory variables act multiplicatively on 

the survival function, and either speed up or slow down the rate of ‘failure’. If g is a 

positive function of x and S0 is the baseline survival function, then an accelerated failure 

model can be expressed as 

𝑆𝑥(𝑡) = 𝑆0(𝑡. 𝑔(𝑥)),                              (2.9) 

where the failure rate is speeded up when g(x) < 1. By differentiating Eq. (2.9), the 

associated hazard function is 

ℎ𝑥(𝑡) = ℎ0[𝑡𝑔(𝑥)]𝑔(𝑥).                                                  (2.10) 
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For survival data, accelerated failure models are generally expressed as log-linear 

models, which occurs when (𝑥) = 𝑒𝛽𝑇𝑥  . In that case, one can show that the random 

variable T satisfies 

𝑙𝑜𝑔𝑒𝑇𝑥 = 𝜇0 + 𝛽𝑇𝑥 + 𝜎𝑍,                                    (2.11) 

where Z is a random variable with a zero mean and unit variance. The parameters β 

are then estimated via maximum likelihood methods. As a parametric model, Z is often 

specified as the Extreme Value distribution, which corresponds to T having an 

Exponential, Weibull, Log-logistic or other distribution. When building an accelerated 

failure model, the type of distribution of the dependent variable has to be specified. Using 

accelerated failure time ideas to model recovery rates leads to problems, in that they do 

not allow the target variable to have a zero value, nor can there be any value 𝑡∗ so that 

𝑆(𝑡∗) = 1 in all cases. Thus, in order to use this approach one must allow RR > 1, not 

redefine such recovery rates to be 1; one also needs to use a logistic regression model to 

first classify which loans will have a zero recovery rate, and use the accelerated failure 

approach on those which are predicted to have a positive recovery rate. 

Cox proportional hazards regression 

Cox (1972) proposed the following model: 

ℎ(𝑡; 𝑥) = 𝑒(𝛽𝑇𝑥)ℎ0(𝑡),                          (2.12) 

where β is a vector of unknown parameters, x is a vector of covariates and h0(t) is 

called the baseline hazard function. The advantages of this model are that we do not need 

to know the parametric form of ℎ0(𝑡) in order to estimate β, and also the distribution type 

of the dependent variable does not need to be specified. Cox (1972) showed that one can 

estimate β by using only the rank of the failure times to maximise the likelihood function. 

Case study 

Data 

The project data relates to defaulted personal loans from a UK bank. The debts 

occurred between 1987 and 1999, and the repayment pattern was recorded until the end 

of 2003. Data on a total of 27,278 debts were recorded in the data set, of which 20.1% 

were paid off before the end of 2003, 14% were still being paid, and 65.9% were written 

off beforehand. The debt amount ranged from £500 to £16,000; 78% of debts were less 

than or equal to £5000, and only 3.6% of them were greater than £8000. Loans for 

multiples of a thousand pounds were most frequent, especially 1000, 2000, 3000 and 

5000. Twenty one characteristics of the loan and the borrower were available in the data 

set, including the ratio of the loan to income, employment status, age, time with the bank, 

and purpose and term of the loan. The recovery amount is calculated as: 

default amount − last outstanding balance (for non-write- off loans) 
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OR default amount−write off amount (for write-off loans). 

 

The recovery rate 

Recovery amount 

Default amount
 

is more useful, as it relates to the percentage of the debt which is recovered. The 

average recovery rate in this data set is 0.42 (not including debts still being paid). Some 

debts could have a negative recovery rate, if the defaulted amounts generated interest and 

fees in the months after default, but the debtors did not pay anything, so that the 

outstanding balance kept increasing. Whether fees and interest are allowed to be added 

after default or not is determined by banking rules and the lender’s accounting 

conventions. The vast majority of UK lenders do not add fees, and thus the amount owed 

is frozen at default, and the recovery rate is the amount repaid as a percentage of this. We 

use this convention in this paper, and thus recovery rates only increase with time. This 

also means that we redefine all negative recovery rates to be zero.  If fees and interest are 

included, it is possible for the recovered amount to exceed the amount at default. In this 

case, should one allow RR > 1 or redefine it to be 1? 

We choose the latter course of action, which is consistent with fees being a cost in the 

recovery process, not part of the debt which is repaid. This is what mortgage and car 

finance companies do, in that the fees are taken out of the money received for selling the 

repossessed property before addressing the question of whether or not the remainder is 

enough to cover the defaulted balance of the loan. There is less uniformity for credit card 

and personal loan recoveries, but a collections department will not normally charge fees 

or add interest to the defaulted balance during the recovery process. With these 

conventions, the distribution of the recovery rate is a bathtub shape. 30.3% of debts have 

a 0 recovery rate, and 23.9% debts have a 100% recovery rate, while the others are 

distributed relatively evenly between 0 and 1. (This distribution excludes the debts which 

are still being paid.)The whole data set is split randomly into 2 parts: the training sample 

contains 70% of observations and is used for building models, while the test sample 

contains 30% of observations and is used for testing and comparing models. The 

modelling details are presented in the following sections. The results from linear 

regression and survival analysis models are compared. 

Linear regression  

Two multiple linear regression models are built, one with the recovery rate as the target 

variable and one with the recovery amount as the target variable. In the former case, the 

predicted recovery rate can be multiplied by the default amount, and therefore the 

recovery amount can be predicted indirectly; while in the latter case, a predicted recovery 

rate can be obtained by dividing the predicted recovery amount by the default amount. 

The stepwise selection method was used for all regression models. A coarse 

classification was used on the categorical variables, so that attributes with similar average 
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target variable values are put in the same class. The two continuous variables ‘default 

amount’ and ‘ratio of default amount to total loan’ were transformed into ordinal variables 

as well, and their functions (square root, logarithm, and reciprocal) and original form 

were also included in the model building in order to find the best fit for the recovery rate. 

The results are reported using a number of measures; R2, the coefficient of determination, 

is a common measure of the goodness-of-fit for regression models, in that it measures 

how much of the square of the differences between the recovery rates of individual 

debtors and the mean recovery rate is explained by the RR model. Although R2 values of 

up to 0.8 are common in time series analysis, R2 values of around 0.1–0.2 are not unusual 

in real problems involving individual people. If one is only interested in how well the 

model ranks the debtors, the Spearman coefficient is more appropriate. On the other hand, 

if one is concerned about the error between the actual RR and the predicted RR for each 

individual, then the mean absolute error (MAE) or mean squared error (MSE) would be 

the important measure (the MAE and MSE values for the recovery amount will be much 

greater than those for the recovery rate, as the latter is always bounded between 0 and 1). 

Consistent with the findings of previous studies (Bellotti & Crook, 2009;  Dermine & 

de Carvalho, 2006;  Matuszyk et al., 2010), the 𝑅2 values for these models are small (see 

Table 1, which gives the results on the training samples); however, they are statistically 

significant. The Spearman rank correlation reflects the accuracy of the ranking of the 

predicted values. From the results, we can see that modelling the recovery rate directly is 

better than modelling it indirectly by first estimating the recovery amount. Surprisingly, 

better recovery amount results are also obtained by predicting the recovery rate first and 

then calculating the recovery amount, rather than estimating the amount directly. The 

details of the recovery rate models, the results of which are given in Table 1, are provided 

in  Zhang and Thomas (2012). 

Table 1. Linear regression models (results from the training sample). 

 𝑅2 Spearman MAE MSE 

Recovery rate from recovery rate model 0.1066 0.3183 0.3663 0.1650 

Recovery rate from recovery amount 

model 
0.0354 0.2384 0.4046 0.2352 

Recovery amount from recovery amount 

model 
0.1968 0.2882 1239.2 2774405.4 

Recovery amount from recovery rate 

model 
0.2369 0.3307 1179.6 2637470.7 

The most significant variable is the ratio of the default amount to the total loan, which 

is negatively related to the recovery rate. This gives some indication of how much of the 

loan was still owed when default occurred, and if a substantial proportion of the loan was 

repaid before default then the recovery rate is likely to be high. The second most 

significant variable is ‘second applicant status’, where loans with a second applicant have 

a higher recovery rate than loans without a second applicant. Other significant variables, 

using the t-value as a measure, include employment status, residential status, and default 

amount. The coefficient of the reciprocal of the default amount looks very large but is 
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only multiplying small values, and thus the overall impact, although significant, is not the 

largest effect. The years of default were also allowed as variables, since they represent 

the best that one could hope to do by using economic variables to represent the temporal 

changes in the credit environment. The fact that they were not very significant means that 

it was felt that adding in economic variables would have only a minor impact in these 

models. In the recovery amount model, the variables which entered the model are very 

similar to those in the recovery rate model. Because predicting the recovery amount from 

the recovery amount model directly is worse than predicting it indirectly via the recovery 

rate model, the coefficient details of the recovery amount model are not given in this 

paper. 

Survival analysis 

There are two reasons why survival analysis may be a useful approach for recovery 

rate and LGD modelling. Firstly, debts which are still being repaid cannot be included in 

the standard linear regression approach. Survival analysis models can treat such 

repayments as censored, and easily include them in the model building. Secondly, the 

recovery rate is not normally distributed, and therefore modelling it using a linear 

regression violates the assumptions of linear regression models. However, survival 

analysis models can handle this problem: different distributions can be set in accelerated 

models, and the Cox model’s approach allows any empirical distribution. Survival 

analysis models for modelling both the recovery rate and the recovery amount can be 

built. The variable of interest is the percentage recovered when the debt is written off, so 

written-off debts are treated as uncensored, while debts which have been paid off or were 

still being paid are treated as censored. All of the independent variables which are used 

in building the linear regression model are used here as well, and once again they are 

coarse classified and dummy variables are used to represent the various classes so created. 

Continuous variables were firstly split into 10–15 bins to become 10–15 dummy 

variables, and these were used in a proportional hazard model without any other 

characteristics. Observing the coefficients from the model output, bins with similar 

coefficients were combined. The same method was used for nominal variables. Two 

continuous variables, ‘default amount’ and ‘ratio of default amount to total loan’, were 

included in the models, both in their original form and as coarse classified versions. 

Because accelerated failure time models cannot handle zeros existing in the target 

variable, observations with a recovery rate of zero should be removed from the training 

sample before building the accelerated failure time models. This is something that could 

also be done for the proportional hazards model, so that one is estimating the spike at RR 

= 0 separately from the rest of the distribution. This leads to a new task: a classification 

model is needed to classify recovery zeros and non-zeros (a recovery rate greater than 0). 

Therefore, a logistic regression model based on the training sample is built before 

building the accelerated failure time models. In the logistic regression model, the 

variables ‘month until default’ and ‘loan term’ are very significant, even though they were 

not very important in the linear regression models previously. The other variables selected 

in the model are similar to those in the previous regression models. The Gini coefficient 

is 0.32, and the logistic regression model predicted 57.8% of zeros as non-zeros and 

21.5% of non-zeros as zeros. Cox regression models allow zeros to exist in the target 

variable, so two variants of the Cox model were built: one where those with RR = 0 were 
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first separated out by building a logistic regression model, and a one stage model where 

all of the data were used to build the Cox model. For the accelerated failure life models, 

the type of distribution of the survival time needs to be chosen. After some simple 

distribution tests, the Weibull, Log-logistic and Gamma distributions were chosen for the 

recovery rate models; and the Weibull and Log-logistic distributions were chosen for the 

recovery amount models. 

Unlike linear regression, survival analysis models generate a predicted distribution of 

recovery values for each debt, rather than a precise value. Thus, to give a precise value, 

the quantile or mean of the distribution needs to be chosen. For all of the survival models, 

the mean and median values are not good predictors, because they are too big and generate 

large MAE and MSE values compared with predictions from some other quantiles. The 

optimal predicting quantile points are chosen based on minimising the MAE and/or MSE. 

The lowest MAE and MSE values are found using quantile levels which are lower than 

the median, and the results from the training sample models are listed in Tables 2 and 3. 

The optimal quantiles are obtained empirically, but it would be interesting to see whether 

there is any theoretical justification for them which would be useful in using quantile 

regression in LGD modelling (Whittaker, Whitehead, & Somers, 2005). The model 

details of Cox with 0 recoveries are found in Zhang and Thomas (2012). 

Using a quantile value has some advantages in this case, and quantile regression has 

previously been applied in credit scoring research. Whittaker et al. (2005) use quantile 

regression to analyse collection actions, and Somers and Whittaker (2007) use quantile 

regression for modelling distributions of profit and loss. Benoit and Van den Poel (2009) 

apply quantile regression to the analysis of customer life value. Using quantile values to 

make predictions avoids the influence of outliers. When using survival analysis in 

particular, the mean value of a distribution is affected by the number of censored 

observations in the data set, so the use of a quantile value is a good idea when making 

predictions. If the Spearman rank correlation test is the criterion by which the model is 

judged, we can see from the above tables of results (Tables 2 and 3) that the accelerated 

failure time model with a log-logistic distribution is the best of several survival analysis 

models. We can also see that the optimal quantile point is almost the same, regardless of 

the distribution in accelerated failure time models. In addition, the number of censored 

observations in the training sample does influence the optimal quantile point. If some of 

the censored observations are deleted from the training sample, the optimal quantile 

points move towards the median. 

Table 2. Survival analysis model results for the recovery rate(training sample). 

Recovery rate Optimal quantile(%) Spearman MAE MSE 

Accelerated(Weibull) 34 0.24731 0.3552 0.1996 

Accelerated(log-logistic) 34 0.25454 0.3532 0.2015 

Accelerated(gamma) 36 0.16303 0.3597 0.1968 

Cox with 0 recoveries 46 0.24773 0.3631 0.2092 

Cox without 0 recoveries 30 0.24584 0.3604 0.2100 
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Table 3. Survival analysis model results for the recovery amount(training sample). 

Recovery amount Optimal quantile(%) Spearman MAE MSE 

Accelerated(Weibull) 34 0.30768 1129.7 3096952 

Accelerated(log-logistic) 34 0.31582 1117.0 3113782 

Cox with 0 recoveries 46 0.29001 1174.5 3145133 

Cox without 0 recoveries 30 0.30747 1140.25 3112821 

Model comparison 

The models are compared based on the results using the test sample. For debts which 

are still being paid, the final recovery amount and recovery rate are not known, and they 

cannot be measured properly; thus, these observations are removed from the test sample. 

This is unfortunate, since it means that one is comparing the methods using only debts 

which have been completely either written off or paid off, even though one of the 

advantages of survival analysis is that it can deal with loans which are still being paid. 

The results from the single distribution models when applied to the test sample are listed 

in Tables 4 and 5. From the recovery rate (Table 4), if the 𝑅2 value and the Spearman 

ranking test are the criteria for judging a model, we can see that (1) Linear regression is 

the best one, and (5) Cox—including zeros is the second best. In the training sample, the 

accelerated failure time model with a log-logistic distribution outperforms the Cox 

models, but for the test sample, the Cox model including zeros is more robust than the 

accelerated failure models. In terms of the MSE, linear regression always achieves the 

lowest MSE, as one would expect, given that it is minimising that criterion. All of the 

survival models have similar results. For the MAE, the results are very consistent, except 

that the linear regression models are poor. Modelling the recovery rate directly (rows 1–

6 in Table 4) gives better results than modelling it indirectly via the recovery amount 

(rows 7–11 of Table 4). Almost all of the R2 and Spearman test results from the recovery 

amount models are lower than those from the recovery rate models. From the recovery 

amount results in Table 5, we can see that modelling the recovery amount directly (rows 

1–5) is not as good as estimating the recovery rate first (rows 6–11). The (6) Linear 

regression∗ model achieves the highest R2, while the (10) Cox—including zeros∗ model 

achieves the highest Spearman ranking coefficient. Both of these are recovery rate 

models, and the predicted recovery amount is calculated by multiplying the predicted 

recovery rate by the default amount. The regression models and Cox including zeros 

models outperform the accelerated failure time models. In the test sample, the Cox 

including zeros model beats the other survival models. This is because the logistic 

regression model which is used before the other models to classify zero and non-zero 

recoveries generates more errors in the test sample, but this model does not affect the 

Cox—including zeros model. 
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Table 4. Comparison of the recovery rates from different single distribution models(test 

sample). 

Recovery rate 𝑅2 Spearman MAE MSE 

(1)Linear regression 0.0904 0.29593 0.3682 0.1675 

(2)A-Weibull 0.0598 0.25306 0.3586 0.2042 

(3) A-log-logistic 0.0638 0.25990 0.3560 0.2060 

(4) A-gamma 0.0527 0.23496 0.3635 0.2015 

(5)Cox-including zeros 0.0673 0.27261 0.3546 0.2006 

(6) Cox-excluding zeros 0.0609 0.25506 0.3564 0.2072 

(7) Linear regression* 0.0292 0.22837 0.4077 0.2432 

(8) A-Weibull* 0.0544 0.24410 0.3606 0.2070 

(9) A-log-logistic* 0.0591 0.25315 0.3575 0.2077 

(10)Cox- including zeros* 0.0425 0.22646 0.3693 0.2216 

(11)Cox-excluding zeros* 0.0504 0.23269 0.3624 0.2108 

*Results from the recovery amount models. 

Table 5. Comparison of recovery amounts from different single distribution models(test 

sample). 

Recovery amount 𝑅2 Spearman MAE MSE 

(1) Linear regression 0.1807 0.28930 1212.1 2634270 

(2) A-Weibull 0.1341 0.30594 1123.5 3026908 

(3) A-log-logistic 0.1318 0.31178 1111.7 3047317 

(4) Cox-including zeros 0.1572 0.31788 1138.9 2887499 

(5) Cox-excluding zeros 0.1400 0.30437 1125.3 3017661 

(6) Linear regression* 0.2068 0.32522 1162.4 2549591 

(7) A-Weibull* 0.1424 0.31149 1116.1 2982477 

(8) A-log-logistic* 0.1396 0.31697 1105.9 3014320 

(9) A-gamma* 0.1413 0.30139 1141.5 2972807 

(10) Cox-including zeros* 0.1628 0.34619 1101.9 2906821 

(11) Cox-excluding zeros* 0.1377 0.31246 1107.4 3028183 

*Results from the recovery rate models. 

Conclusions 

Estimating the recovery rate and recovery amount has recently become much more 

important, both because of the new Basel Accord regulation and because of the increase 

in the number of defaulters due to the recession. 
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This paper compares Several models of predicting the recovery rate for unsecured 

consumer loans. Linear regression and survival analysis are the two main techniques used 

in this research, where survival analysis can cope with censored data better than linear 

regression. For survival analysis models, we investigated the use of proportional hazard 

models and accelerated failure time models, although the latter have certain problems that 

need to be addressed: they do not allow zeros to exist in the target variable and the 

recovery rate cannot be bounded above. This can be overcome by not defining RR > 1 to 

be censored at 1 and by first using a logistic regression model to classify which loans 

have zero and non-zero recovery rates. Cox’s proportional hazard regression models can 

deal with zeros in the target variable and with the requirement that RR ≤ 1 for all loans, 

so that approach was tried, both with logistic regression used first to split off the zero 

recoveries and without using logistic regression first. In all cases, the approaches were 

used to model both the recovery rate and the recovery amount, and for all of the models 

it proved to be better to model the recovery rate and then use this estimate to calculate the 

recovery amount, rather than modelling the recovery amount directly. 

In our comparison, it has been shown that linear regression is better than survival 

analysis models in most situations. For recovery rate modelling, linear regression 

achieves a higher 𝑅2  value and Spearman rank coefficient than the survival analysis 

models. The Cox model without the logistic regression first is the best of the survival 

analysis models. This is surprising, given the flexibility of distribution that the Cox 

approach allows. Of course, one would expect the minimum MSE to be obtained by the 

linear regression on the training sample, because that is what the linear regression tries to 

do. However, the superiority of the linear regression also holds for the other measures, on 

both the training and test sets. One reason for this may be the need to separate the zero 

recovery rate cases in the accelerated failure time approach. This is obviously difficult to 

do, and the errors from this first stage result in a poorer model at the second stage.  

Another reason for the survival analysis approach not doing so well is that in 

performing these comparisons we used test sets where the recovery rate was known for 

all of the debtors. That is, they had all been either paid off or written off. Thus, there was 

no opportunity to test the model’s predictions on those who were still paying, which is of 

course the type of data that are used by the survival analysis models, though not the 

regression based models. Finally, in the survival analysis approach there is the question 

of whether loans with RR = 1 are really censored or not. Assuming that they are not 

censored would lead to lower estimates of RR, which might be more appropriate for the 

conservative philosophy of the Basel Accord. 

These results are based on the case study data set, which, though quite large, is from 

only one UK lender. The results require further validation from either the use of other 

data sets or some theoretical underpinning for them to be considered valid for all types of 

unsecured consumer credit LGD modelling. 
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