Daily Uganda Shilling/United States Dollar Exchange Rates Modeling by Box-Jenkins Techniques

Ette Harrison Etuk
Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Port Harcourt, Nigeria

Bazinzi Natamba
Department of Accounting, Faculty of Commerce, Makerere University Business School, Kampala, Uganda

Abstract

A 180-point daily exchange rate series of the Uganda shilling (UGX) and the United States dollar (USD) covering from 25 August 2014 to 20 February 2015 is analyzed by seasonal Box-Jenkins methods. A time-plot of the series shows an upward trend indicating a relative depreciation of the UGX. A seven-day differencing of the series yield a series that is adjudged stationary by the Augmented Dickey Fuller (ADF) Test. However, its correlogram contradicts a stationarity hypothesis. A non-seasonal differencing of this series produces a series adjudged as stationary and having an autocorrelation function that suggests two models, namely: a SARIMA(0,1,1)x(0,1,1)7 and a SARIMA(0,1,1)x(1,1,1)7. Diagnostic checking methods used to compare the two models reveal that the former model is the more adequate model. Hence it is proposed that the exchange rates follow a SARIMA(0,1,1)x(0,1,1)7 model. Forecasting might therefore be based on this model.

Keywords: Uganda shilling, United States Dollar, foreign exchange rates, SARIMA modeling.

Introduction and literature review

For planning purpose a forecasting model for foreign exchange rates might be helpful. The purpose of this write-up is to propose such a model for daily Uganda

1 Corresponding author’s email: ettetuk@yahoo.com, ettehutuk@gmail.com
Shilling (UGX) and the United State Dollar (USD). Many financial time series exhibit seasonality apart from being volatile. Such seasonal series may be modeled by seasonal Box-Jenkins or seasonal autoregressive integrated moving average (SARIMA) methods.

Of recent SARIMA methods have been used extensively for modeling such series. For instance, Mostafei and Sakhbakhsh (2011) observed that for the modeling of monthly Iraqi oil production SARIMA methods outdid SARFIMA methods. They ended up fitting a SARIMA(0,1,0)x(0,0,1)_{12} model to the series. A SARIMA(0,1,0)x(2,1,1)_{12} model is proposed for the forecasting of monthly para rubber export sales of Thailand by Pattranurakyothin and Kummungkit (2012). Bhatnagar et al. (2012) fitted a SARIMA(0,0,1)x(0,1,1)_{12} model to monthly incidence of Dengue in Rajasthan. Etuk and Victor-Edema (2014) proposed the forecasting of monthly Nigerian bank prime lending rates on the basis of a SARIMA(0,1,0)x(2,1,1)_{12} model. Quarterly Kenyan inflation rates have modeled as a SARIMA(0,1,0)x(0,0,1)_{4} by Gikungu et al. (2015). Zhang et al. (2015) modeled quarterly mortalities of road traffic injuries by a SARIMA(0,1,0)x(0,0,1)_{4} model.

Materials and methods

Data

The data for this write-up are 180 daily UGX/USD exchange rates downloaded from the website www.exchange-rates.org/history/UGX/USD/T accessed on Saturday 21 February 2015. It is to be interpreted as the amount of UGX in one USD.

Sarima models

A stationary time series \(\{X_t\} \) is said to follow an autoregressive moving average model of order \(p \) and \(q \) denoted by ARMA(\(p, q \)) if

\[
X_t - \alpha_1 X_{t-1} - \alpha_2 X_{t-2} - \ldots - \alpha_p X_{t-p} = \epsilon_t + \beta_1 \epsilon_{t-1} + \beta_2 \epsilon_{t-2} + \ldots + \beta_q \epsilon_{t-q}
\]

(1)

where \(\{\epsilon_t\} \) is a white noise process and the \(\alpha \)'s and \(\beta \)'s are constants such that the model is stationary as well as invertible.

Suppose model (1) is put as

\[
A(L)X_t = B(L)\epsilon_t
\]

(2)

where \(A(L) \) is the autoregressive (AR) operator defined by \(A(L) = 1 - \alpha_1 L - \alpha_2 L^2 - \ldots - \alpha_p L^p \) and \(B(L) \) is the moving average (MA) operator defined by \(B(L) = 1 + \beta_1 L + \beta_2 L^2 + \ldots + \beta_q L^q \) and \(L^k X_t = X_{t-k} \).

In the event of series non-stationarity as is often the case, Box and Jenkins (1976) have proposed that with differencing up to a certain level the series may be stationary. Suppose for a particular time series \(\{X_t\} \) \(d \) is the minimum differencing order for which it becomes stationary. Let \(\{\nabla^d X_t\} \) be this \(d \)th difference of the series. The operator \(\nabla = 1-L \). If \(\{\nabla^d X_t\} \) follows an ARMA(\(p, q \)) the series \(\{X_t\} \) is said to follow an
autoregressive integrated moving average model of order \(p, d \) and \(q \) denoted by ARIMA\((p,d,q)\).

If the time series \(\{X_t\} \) exhibits a seasonal pattern of period \(s \), Box and Jenkins (1976) further proposed that it may be modeled as

\[
A(L)\Phi(L^s)\nabla^d\nabla^D_s X_t = B(L)\Theta(L^s)\epsilon_t
\]

(3)

where \(\Phi(L) \) and \(\Theta(L) \) are the seasonal AR and MA operators respectively. The operator \(\nabla_s \) is the seasonal difference operator defined by \(\nabla_s = 1 - L^s \) and \(D \) is the minimum order of seasonal differencing necessary for stationarity to be achieved. Suppose that they are \(P \) and \(Q \) degree polynomials respectively, model (3) is called a seasonal autoregressive integrated moving average model of order \(p, d, q, P, D, Q \) and \(s \) denoted by SARIMA\((p,d,q)x(P,D,Q)s\).

Sarima model fitting

The fitting of model (3) starts with the determination of the orders \(p, d, q, P, D, Q \) and \(s \). The seasonal period \(s \) may be suggestive from the glaring seasonal nature of the time series as with rainfall or atmospheric temperature series. Otherwise some preliminary inspection of the series could reveal a seasonal pattern. Moreover the correlogram of a seasonal series exhibits some seasonal pattern of the same periodicity.

The AR orders \(p \) and \(P \) are estimated by the non-seasonal and the seasonal cut-off points of the partial autocorrelation functions (PACF) respectively. Similarly, the MA orders \(q \) and \(Q \) are estimated by the non-seasonal and the seasonal cut-off points of the autocorrelation function (ACF) respectively. It is often enough to choose the differencing orders \(d \) and \(D \) such that their sum is at most equal to 2. Seasonality may be tested using the augmented Dickey-Fuller (ADF) test.

Parameter estimation is based on the application of nonlinear optimization techniques like the least squares and the maximum likelihood procedures. Model comparison will be done using Akaike information criterion (AIC).

Computer software

The statistical and econometric software eviews 7 shall be used for all analytical work in this write-up. It is based on the least squares criterion.

Results and discussion

The time plot in Figure 1 of the realization called UXUD herein shows an upward trend which means that UGX relatively depreciates in the given interval of time. Preliminary data inspection reveals that weekly minimums tend to lie on Mondays and the maximums on Sundays which is an evidence of weekly seasonality. Therefore, a seven-day differencing of UXUD yields a series called SDUXUD which has a generally horizontal trend (See Figure 2). The ADF test statistic for UXUD and SDUXUD are \(-0.88\) and \(-3.88\). The 1%, 5% and 10% critical values are \(-3.47, -2.88\) and
-2.58 respectively. Hence the test declares UXUD non-stationary but SDUXUD stationary.

However the correlogram of SDUXUD in Figure 3 does not seem to confirm this stationarity hypothesis. A non-seasonal differencing of SDUXUD yields DSDUXUD which has a generally flat trend as can be seen in Figure 4 and a correlogram in Figure 5 that supports a stationarity hypothesis. Moreover two SARIMA models are immediately suggestive: a SARIMA(0,1,1)x(0,1,1)$_7$ and a SARIMA(0,1,1)x(1,1,1)$_7$.

Estimation of the SARIMA(0,1,1)x(0,1,1)$_7$ model as summarized in Table 1 yields the model

$$X_t + .2981\varepsilon_{t-1} - .9401\varepsilon_{t-7} - .2648\varepsilon_{t-8} = \varepsilon_t$$

whereas that of the SARIMA(0,1,1)x(1,1,1)$_7$ as summarized in Table 2 yields

$$X_t - .0437X_{t-7} + .3055\varepsilon_{t-1} + .9354\varepsilon_{t-7} - .2702\varepsilon_{t-8} = \varepsilon_t$$

Clearly model (4) does better than model (5) on all counts. That is, it has lower AIC, Schwarz criterion and Hannan-Quinn criterion and higher R^2 than model (5). Moreover its residuals follow a normal distribution (See Figure 6).
Figure 3: Correlogram of $sduxxud$

Figure 5: Correlogram of $dsduxud$
Table 1: Estimation of the sarima \((0,1,1)x(0,1,1)_7\) model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>T-statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA(1)</td>
<td>-0.298192</td>
<td>0.073181</td>
<td>-4.074715</td>
<td>0.0001</td>
</tr>
<tr>
<td>MA(7)</td>
<td>-0.940056</td>
<td>0.018853</td>
<td>-49.86336</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(8)</td>
<td>0.264799</td>
<td>0.072051</td>
<td>3.675153</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

R-squared 0.483793 Mean dep. var -0.104651
Adjusted R-squared 0.477684 S.D. dep. var 15.25497
S.E. of regression 11.02499 Akaike info criter 7.655493
Sum squared resid 20542.00 Schwarz criterion 7.710391
Log likelihood -655.3724 Hannan-Quinn crit 7.677767
Durbin-Watson stat 2.024825

Inverted MA Roots 0.99 .62 ± .77i .28 -.22±.97i -.89±.43i

Table 2: estimation of the Sarima \((0,1,1)x(1,1,1)_7\) model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>T-statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(7)</td>
<td>0.043737</td>
<td>0.083288</td>
<td>0.525122</td>
<td>0.6002</td>
</tr>
<tr>
<td>MA(1)</td>
<td>-0.305488</td>
<td>0.075603</td>
<td>-4.040688</td>
<td>0.0001</td>
</tr>
<tr>
<td>MA(7)</td>
<td>-0.935388</td>
<td>0.022796</td>
<td>-41.03364</td>
<td>0.0000</td>
</tr>
<tr>
<td>MA(8)</td>
<td>0.270197</td>
<td>0.074342</td>
<td>3.634519</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

R-squared 0.472921 Mean dep. var -0.024242
Adjusted R-squared 0.463100 S.D. dep. var 15.35513
S.E. of regression 11.25123 Akaike info criter 7.702776
Sum squared resid 20381.02 Schwarz criterion 7.778072
Log likelihood -631.4790 Hannan-Quinn crit 7.733341
Durbin-Watson stat 2.011882

Inverted AR Roots 0.64 .40±.50i -.14±.62i -.58±.28i
Inverted MA Roots 0.99 .62±.77i .29 -.22±.97i -.89±.43i

Figure 6: histogram of Sarima \((0,1,1)x(0,1,1)_7\) residuals
Conclusion

It may be concluded that daily UGX-USD exchange rates follow a SARIMA(0,1,1)x(0,1,1)\(_7\) model. Forecasting of the series may be based on this model.

References

