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Abstract

A 180-point daily exchange rate series of the Uganda shilling (UGX) and
the United States dollar (USD) covering from 25 August 2014 to 20 February
2015 is analyzed by seasonal Box-Jenkins methods. A time-plot of the series
shows an upward trend indicating a relative depreciation of the UGX. A seven-
day differencing of the series yield a series that is adjudged stationary by the
Augmented Dickey Fuller (ADF) Test. However, its correlogram contradicts a
stationarity hypothesis. A non-seasonal differencing of this series produces a
series adjudged as stationary and having an autocorrelation function that
suggests two models, namely: a SARIMA(0,1,1)x(0,1,1); and a
SARIMA(0,1,1)x(1,1,1)7. Diagnostic checking methods used to compare the
two models reveal that the former model is the more adequate model. Hence it
is proposed that the exchange rates follow a SARIMA(0,1,1)x(0,1,1)7 model.
Forecasting might therefore be based on this model.
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Introduction and literature review

For planning purpose a forecasting model for foreign exchange rates might be
helpful. The purpose of this write-up is to propose such a model for daily Uganda
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Shilling (UGX) and the United State Dollar (USD). Many financial time series exhibit
seasonality apart from being volatile. Such seasonal series may be modeled by seasonal
Box-Jenkins or seasonal autoregressive integrated moving average (SARIMA) methods.

Of recent SARIMA methods have been used extensively for modeling such series.
For instance, Mostafei and Sakhbakhsh (2011) observed that for the modeling of
monthly Iragi oil production SARIMA methods outdid SARFIMA methods. They
ended up fitting a SARIMA(0,1,0)x(0,0,1)12 model to the series. A
SARIMA(0,1,0)x(2,1,1)12 model is proposed for the forecasting of monthly para rubber
export sales of Thailand by Pattranurakyothin and Kummungkit (2012). Bhatnagar et al.
(2012) fitted a SARIMA(0,0,1)x(0,1,1)12 model to monthly incidence of Dengue in
Rajasthan. Etuk and Victor-Edema (2014) proposed the forecasting of monthly Nigerian
bank prime lending rates on the basis of a SARIMA(0,1,0)x(2,1,1)12 model. Quarterly
Kenyan inflation rates have modeled as a SARIMA(0,1,0)x(0,0,1)4 by Gikungu et al.
(2015). Zhang et al. (2015) modeled quarterly mortalities of road traffic injuries by a
SARIMA(0,1,0)x(0,0,1)4 model.

Materials and methods
Data
The data for this write-up are 180 daily UGX/USD exchange rates downloaded from

the website www.exchange-rates.org/history/UGX/USD/T accessed on Saturday 21
February 2015. It is to be interpreted as the amount of UGX in one USD.

Sarima models

A stationary time series {Xt} is said to follow an autoregressive moving average
model of order p and g denoted by ARMA(p, q) if

Xt - a1 Xe1 - 02Xt2 - ... - apXep = &t + Pigrr + Poer2 + ... + Pgetg 1)

where {&t} is a white noise process and the o’s and ’s are constants such that the
model is stationary as well as invertible.

Suppose model (1) is put as
A(L)X: = B(L)t (2)

where A(L) is the autoregressive (AR) operator defined by A(L) = 1 - aul - ozl.? -
... - opLP and B(L) is the moving average (MA) operator defined by B(L) =1 + BiL +
B2L2+ ...+ BgL%and L*X; = Xek.

In the event of series non-stationarity as is often the case, Box and Jenkins (1976)
have proposed that with differencing up to a certain level the series may be stationary.
Suppose for a particular time series {X} d is the minimum differencing order for which
it becomes stationary. Let {V9X} be this d" difference of the series. The operator V =
1-L. If {V9X3} follows an ARMA(p,q) the series {X:} is said to follow an
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autoregressive integrated moving average model of order p, d and q denoted by
ARIMA(p,d,q).

If the time series {X:} exhibits a seasonal pattern of period s, Box and Jenkins (1976)
further proposed that it may be modeled as

AL)D(LS)VIVPs Xt = B(L)O(LY)et
3)

where ®(L) and ®(L) are the seasonal AR and MA operators respectively. The
operator Vs is the seasonal difference operator defined by Vs-=1..° and D is the minimum
order of seasonal differencing necessary for stationarity to be achieved. Suppose that
they are P and Q degree polynomials respectively, model (3) is called a seasonal
autoregressive integrated moving average model of order p, d, g, P, D, Q and s
denoted by SARIMA(p,d,q)x(P,D,Q)s.

Sarima model fitting

The fitting of model (3) starts with the determination of the orders p, d, q, P, D, Q
and s. The seasonal period s may be suggestive from the glaring seasonal nature of the
time series as with rainfall or atmospheric temperature series. Otherwise some
preliminary inspection of the series could reveal a seasonal pattern. Moreover the
correlogram of a seasonal series exhibits some seasonal pattern of the same periodicity.

The AR orders p and P are estimated by the non-seasonal and the seasonal cut-off
points of the partial autocorrelation functions (PACF) respectively. Similarly, the MA
orders g and Q are estimated by the non-seasonal and the seasonal cut-off points of the
autocorrelation function (ACF) respectively. It is often enough to choose the
differencing orders d and D such that their sum is at most equal to 2. Seasonality may be
tested using the augmented Dickey-Fuller (ADF) test.

Parameter estimation is based on the application of nonlinear optimization
techniques like the least squares and the maximum likelihood procedures. Model
comparison will be done using Akaike information criterion (AIC).

Computer software

The statistical and econometric software eviews 7 shall be used for all analytical
work in this write-up. It is based on the least squares criterion.

Results and discussion

The time plot in Figure 1 of the realization called UXUD herein shows an upward
trend which means that UGX relatively depreciates in the given interval of time.
Preliminary data inspection reveals that weekly minimums tend to lie on Mondays and
the maximums on Sundays which is an evidence of weekly seasonality. Therefore, a
seven-day differencing of UXUD vyields a series called SDUXUD which has a
generally horizontal trend (See Figure 2). The ADF test statistic for UXUD and
SDUXUD are —0.88 and -3.88. The 1%, 5% and 10% critical values are -3.47, -2.88 and
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-2.58 respectively. Hence the test declares UXUD non-stationary but SDUXUD
stationary.
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FIGURE 2: SDUXUD

However the correlogram of SDUXUD in Figure 3 does not seem to confirm this
stationarity hypothesis. A non-seasonal differencing of SDUXUD yields DSDUXUD
which has a generally flat trend as can be seen in Figure 4 and a correlogram in Figure 5
that supports a stationarity hypothesis. Moreover two SARIMA models are immediately
suggestive: a SARIMA(0,1,1)x(0,1,1)7 and a SARIMA(0,1,1)x(1,1,1)7.

Estimation of the SARIMA(0,1,1)x(0,1,1)7 model as summarized in Table 1 yields
the model

Xt +..2981¢r1 - .9401&t7 - .2648¢t8 = &t 4)
whereas that of the SARIMA(0,1,1)x(1,1,1)7 as summarized in Table 2 yields
Xt - .0437Xt.7 + .3055¢t.1 + .9354¢t.7 - .2702¢18 = &t (5)

Clearly model (4) does better than model (5) on all counts. That is, it has lower AIC,
Schwarz criterion and Hannan-Quinn criterion and higher R? than model (5). Moreover
its residuals follow a normal distribution (See Figure 6).
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Figure 3: correlogram of sduxud
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Table 1: Estimation of the sarima (0,1,1)x(0,1,1)7 model

Dependent Variable: DSDUXUD

Variable

Coefficient

Std. Error

T-statistic

Prob.

MA(L)

-0.298192

0.073181

-4.074715

0.0001

MA(7)

-0.940056

0.018853

-49.86336

0.0000

0.264799

0.072051

3.675153

0.0003

MA(8)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid

-0.104651
15.25497
7.655493
7.710391
7.677767

0.483793 Mean dep. var

0.477684 S.D. dep. var
11.02499 | Akaikae info criter
20542.00 | Schwarz criterion
Log likelihood -655.3724 | Hannan-Quinn crit
Durbin-Watson stat 2.024825
Inverted MA Roots .99 62771 .28

-.22+.97i -0.89+-43i

Table 2: estimation of the Sarima (0,1,1)x(1,1,1)7 model

Dependent Variable: DSDUXUD

Variable

Coefficient

Std. Error

T-statistic

Prob.

AR(7)

0.043737

0.083288

0.525122

0.6002

MA(1)

-0.305488

0.075603

-4.040688

0.0001

MA(7)

-0.935388

0.022796

-41.03364

0.0000

0.270197

0.074342

3.634519

0.0004

MA(8)
R-squared
Adjusted R-squared
S.E. of regression
Sum squared resid
Log likelihood
Durbin-Watson stat 2.011882
Inverted AR Roots .64  .40+.50i
Inverted MA Roots .99 .62+.77i

0.472921
0.463100
11.25123
20381.02
-631.4790

-0.024242
15.35513
7.702776
7.778072
7.733341

Mean dep. var
S.D. dep. var
Akaike info criter
Schwarz criterion
Hannan-Quinn crit

-14+.62i -.58+.28i
29 -.22+.97i -.89+.43i

24

Series: Residuals
Sample 9 180
20 Observations 172
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Figure 6: histogram of Sarima (0,1,1)x(0,1,1)7 residuals
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Conclusion

It may be concluded that daily UGX-USD exchange rates follow a
SARIMA(0,1,1)x(0,1,1)7 model. Forecasting of the series may be based on this model.
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