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Abstract 

A 180-point daily exchange rate series of the Uganda shilling (UGX) and 

the United States dollar (USD) covering from 25 August 2014 to 20 February 

2015 is analyzed by seasonal Box-Jenkins methods. A time-plot of the series 

shows an upward trend indicating a relative depreciation of the UGX. A seven-

day differencing of the series yield a series that is adjudged stationary by the 

Augmented Dickey Fuller (ADF) Test. However, its correlogram contradicts a 

stationarity hypothesis.  A non-seasonal differencing of this series produces a 

series adjudged as stationary and having an autocorrelation function that 

suggests two models, namely: a SARIMA(0,1,1)x(0,1,1)7 and a 

SARIMA(0,1,1)x(1,1,1)7. Diagnostic checking methods used to compare the 

two models reveal that the former model is the more adequate model. Hence it 

is proposed that the exchange rates follow a SARIMA(0,1,1)x(0,1,1)7 model. 

Forecasting might therefore be based on this model. 
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Introduction and literature review 

For planning purpose a forecasting model for foreign exchange rates might be 

helpful. The purpose of this write-up is to propose such a model for daily Uganda 
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Shilling (UGX) and the United State Dollar (USD). Many financial time series exhibit 

seasonality apart from being volatile. Such seasonal series may be modeled by seasonal 

Box-Jenkins or seasonal autoregressive integrated moving average (SARIMA) methods.  

Of recent SARIMA methods have been used extensively for modeling such series. 

For instance, Mostafei and Sakhbakhsh (2011) observed that for the modeling of 

monthly Iraqi oil production SARIMA methods outdid SARFIMA methods. They 

ended up fitting a SARIMA(0,1,0)x(0,0,1)12 model to the series. A 

SARIMA(0,1,0)x(2,1,1)12 model is proposed for the forecasting of monthly para rubber 

export sales of Thailand by Pattranurakyothin and Kummungkit (2012). Bhatnagar et al. 

(2012) fitted a SARIMA(0,0,1)x(0,1,1)12 model to monthly incidence of Dengue in  

Rajasthan. Etuk and Victor-Edema (2014) proposed the forecasting of monthly Nigerian 

bank prime lending rates on the basis of a SARIMA(0,1,0)x(2,1,1)12 model. Quarterly 

Kenyan inflation rates have modeled as a SARIMA(0,1,0)x(0,0,1)4 by Gikungu  et al. 

(2015). Zhang et al. (2015) modeled quarterly mortalities of road traffic injuries by a 

SARIMA(0,1,0)x(0,0,1)4 model. 

Materials and methods 

Data 

The data for this write-up are 180 daily UGX/USD exchange rates downloaded from 

the website www.exchange-rates.org/history/UGX/USD/T accessed on Saturday 21 

February 2015. It is to be interpreted as the amount of UGX in one USD.  

Sarima models 

A stationary time series {Xt} is said to follow an autoregressive moving average 

model of order p and q denoted by ARMA(p, q) if 

       Xt - 1Xt-1 - 2Xt-2 - … - pXt-p = t + 1t-1 + 2t-2 + … + qt-q   (1) 

where {t} is a white noise process and the ’s and ’s are constants such that the 

model is stationary as well as invertible.  

    Suppose model (1) is put as 

    A(L)Xt = B(L)t         (2) 

where A(L) is the autoregressive (AR) operator defined by A(L) = 1 - 1L - 2L
2 - 

… - pL
p and B(L) is the moving average (MA) operator defined by B(L) = 1 + 1L + 

2L
2 + … + qL

q and  LkXt = Xt-k.  

    In the event of series non-stationarity as is often the case, Box and Jenkins (1976) 

have proposed that with differencing up to a certain level the series may be stationary. 

Suppose for a particular time series {Xt} d is the minimum differencing order for which 

it becomes stationary. Let {dXt} be this dth difference of the series. The operator  = 

1-L. If {dXt} follows an ARMA(p,q) the series {Xt} is said to follow an 
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autoregressive integrated moving average model of order p, d and q denoted by 

ARIMA(p,d,q). 

If the time series {Xt} exhibits a seasonal pattern of period s, Box and Jenkins (1976) 

further proposed that it may be modeled as 

A(L)(Ls)dD
s Xt = B(L)(Ls)t      

 (3) 

where (L) and (L) are the seasonal AR and MA operators respectively. The 

operator s is the seasonal difference operator defined by s = 1-L
s and D is the minimum 

order of seasonal differencing necessary for stationarity to be achieved.  Suppose that 

they are P and Q degree polynomials respectively, model (3) is called a seasonal 

autoregressive integrated moving average model of order p, d, q, P, D, Q and s  

denoted by SARIMA(p,d,q)x(P,D,Q)s. 

 Sarima model fitting  

The fitting of model (3) starts with the determination of the orders p, d, q, P, D, Q 

and s. The seasonal period s may be suggestive from the glaring seasonal nature of the 

time series as with rainfall or atmospheric temperature series. Otherwise some 

preliminary inspection of the series could reveal a seasonal pattern. Moreover the 

correlogram of a seasonal series exhibits some seasonal pattern of the same periodicity.  

The AR orders p and P are estimated by the non-seasonal and the seasonal cut-off 

points of the partial autocorrelation functions (PACF) respectively. Similarly, the MA 

orders q and Q are estimated by the non-seasonal and the seasonal cut-off points of the 

autocorrelation function (ACF) respectively. It is often enough to choose the 

differencing orders d and D such that their sum is at most equal to 2. Seasonality may be 

tested using the augmented Dickey-Fuller (ADF) test. 

Parameter estimation is based on the application of nonlinear optimization 

techniques like the least squares and the maximum likelihood procedures. Model 

comparison will be done using Akaike information criterion (AIC).  

Computer software   

The statistical and econometric software eviews 7 shall be used for all analytical 

work in this write-up. It is based on the least squares criterion.  

Results and discussion 

 The time plot in Figure 1 of the realization called UXUD herein shows an upward 

trend which means that UGX relatively depreciates in the given interval of time. 

Preliminary data inspection reveals that weekly minimums tend to lie on Mondays and 

the maximums on Sundays which is an evidence of weekly seasonality. Therefore,  a 

seven-day differencing of  UXUD yields a series called SDUXUD which  has a 

generally horizontal trend (See Figure 2). The ADF test statistic for UXUD and 

SDUXUD are –0.88 and -3.88. The 1%, 5% and 10% critical values are -3.47, -2.88 and 
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-2.58 respectively. Hence the test declares UXUD non-stationary but SDUXUD 

stationary.  

 

 

However the correlogram of SDUXUD in Figure 3 does not seem to confirm this 

stationarity hypothesis. A non-seasonal differencing of SDUXUD yields DSDUXUD 

which has a generally flat trend as can be seen in Figure 4 and a correlogram in Figure 5 

that supports a stationarity hypothesis. Moreover two SARIMA models are immediately 

suggestive: a SARIMA(0,1,1)x(0,1,1)7 and a SARIMA(0,1,1)x(1,1,1)7. 

Estimation of the SARIMA(0,1,1)x(0,1,1)7 model as summarized in Table 1 yields 

the model 

Xt + ..2981t-1 - .9401t-7 - .2648t-8 = t      (4) 

whereas that of the SARIMA(0,1,1)x(1,1,1)7 as summarized in Table 2 yields 

Xt - .0437Xt-7 + .3055t-1 + .9354t-7 - .2702t-8 = t    (5) 

Clearly model (4) does better than model (5) on all counts. That is, it has lower AIC, 

Schwarz criterion and Hannan-Quinn criterion and higher R2 than model (5).  Moreover 

its residuals follow a normal distribution (See Figure 6). 

http://www.ijmae.com/
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Figure 3: correlogram of sduxud 

 

 

Figure 5: Correlogram of dsduxud 

http://www.ijmae.com/


International Journal of Management, Accounting and Economics  

Vol. 2, No. 4, April, 2015  

ISSN 2383-2126 (Online) 

© IJMAE, All Rights Reserved                                                                                              www.ijmae.com  

 

 
344 

Table 1: Estimation of the sarima (0,1,1)x(0,1,1)7 model 

Dependent Variable: DSDUXUD 

Variable Coefficient Std. Error T-statistic Prob. 

MA(1) -0.298192 0.073181 -4.074715 0.0001 

MA(7) -0.940056 0.018853 -49.86336 0.0000 

MA(8) 0.264799 0.072051 3.675153 0.0003 

R-squared 0.483793 Mean dep. var -0.104651 

Adjusted R-squared 0.477684 S.D. dep. var 15.25497 

S.E. of regression 11.02499 Akaikae info criter 7.655493 

Sum squared resid 20542.00 Schwarz criterion 7.710391 

Log likelihood -655.3724 Hannan-Quinn crit 7.677767 

Durbin-Watson stat 2.024825   

Inverted MA Roots          .99       .62 .77i      .28       -.22.97i          -0.89-43i 

Table 2: estimation of the Sarima (0,1,1)x(1,1,1)7 model 

Dependent Variable: DSDUXUD 

Variable Coefficient Std. Error T-statistic Prob. 

AR(7) 0.043737 0.083288 0.525122 0.6002 

MA(1) -0.305488 0.075603 -4.040688 0.0001 

MA(7) -0.935388 0.022796 -41.03364 0.0000 

MA(8) 0.270197 0.074342 3.634519 0.0004 

R-squared 0.472921 Mean dep. var -0.024242 

Adjusted R-squared 0.463100 S.D. dep. var 15.35513 

S.E. of regression 11.25123 Akaike info criter 7.702776 

Sum squared resid 20381.02 Schwarz criterion 7.778072 

Log likelihood -631.4790 Hannan-Quinn crit 7.733341 

Durbin-Watson stat 2.011882   

Inverted AR Roots     .64     .40.50i     -.14.62i    -.58.28i 

Inverted MA Roots    .99   .62.77i   .29   -.22.97i  -.89.43i 

 

Figure 6: histogram of Sarima (0,1,1)x(0,1,1)7 residuals 
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Conclusion 

It may be concluded that daily UGX-USD exchange rates follow a 

SARIMA(0,1,1)x(0,1,1)7 model. Forecasting of the series may be based on this model. 
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